
AMR-aware In Situ Indexing and Scalable Querying
Xiaocheng Zou

North Carolina State
University, Raleigh, NC, USA

Oak Ridge National
Laboratory, Oak Ridge, TN,

USA
xzou2@ncsu.edu

David A. Boyuka II
North Carolina State

University, Raleigh, NC, USA
Oak Ridge National

Laboratory, Oak Ridge, TN,
USA

daboyuka@ncsu.edu

Dhara Desai
North Carolina State

University, Raleigh, NC, USA
Oak Ridge National

Laboratory, Oak Ridge, TN,
USA

dadesai@ncsu.edu

Daniel F. Martin
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA
dfmartin@lbl.gov

Suren Byna
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA

sbyna@lbl.gov

Kesheng Wu
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA

KWu@lbl.gov

ADDITIONAL AUTHORS
1. Kushal Bansal, North Carolina State University, Raleigh,

NC, USA, Oak Ridge National Laboratory, Oak Ridge,
TN, USA, kbansal@ncsu.edu

2. Bin Dong, Lawrence Berkeley National Laboratory, Berke-
ley, CA, USA, dbin@lbl.gov

3. Wenzhao Zhang, North Carolina State University, Raleigh,
NC, USA, Oak Ridge National Laboratory, Oak Ridge,
TN, USA, wzhang27@ncsu.edu

4. Houjun Tang, North Carolina State University, Raleigh,
NC, USA, Oak Ridge National Laboratory, Oak Ridge,
TN, USA, htang4@ncsu.edu

5. Dharshi Devendran, Lawrence Berkeley National Labora-
tory, Berkeley, CA, USA, pdevendran@lbl.gov

6. David Trebotich, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA, dptrebotich@lbl.gov

7. Scott Klasky, Oak Ridge National Laboratory, Oak Ridge,
TN, USA, klasky@ornl.gov

8. Hans Johansen, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA, hjohansen@lbl.gov

9. Nagiza F. Samatova (corresponding author), North Car-
olina State University, Raleigh, NC, USA, Oak Ridge
National Laboratory, Oak Ridge, TN, USA, sama-
tova@csc.ncsu.edu

Spring Simulation Multi-Conference 2016 April 3-6, Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International (SCS)

ABSTRACT
Query-driven analytics on scientific datasets is one of funda-
mental approaches for scientific discoveries. Existing stud-
ies have explored query-driven analytics on uniform resolu-
tion meshes. However, querying on adaptive mesh refinement
(AMR) data has not been explored yet. As many simulations
have been lately transitioning to AMR, new methods for effi-
cient query-driven analysis on AMR data are needed.

In this paper, we present the first work to support scalable
AMR-aware analysis. We propose an AMR-aware hybrid
index for supporting two common forms (i.e., spatial and
value-based query selections) in query-driven analytics. To
sustainably support future-scale analysis, we design an in
situ (run-time) index building strategy with minimized per-
formance impact to the co-located simulation. Additionally,
we develop a parallel post-processing query method with an
adaptive workload-balanced strategy. Our evaluation demon-
strates the scalability of our in situ indexing and scalable
querying methods up to 16,384 and 1,024 cores, respectively,
using a Chombo-based benchmark. Compared to non-AMR-
aware indexing and querying, we demonstrate up to 12.4x and
500x performance improvement, respectively.

Author Keywords
AMR; In Situ; Index; Query; Parallel; HPC

1. INTRODUCTION
Adaptive Mesh Refinement (AMR) [3] is an advanced nu-
merical method that dynamically and adaptively refines the
spatial accuracy of a solution where needed during the simu-
lation run. The key factor to its success is its adaptive ability
that dynamically refines simulation resolution across space
and time, which yields a hierarchical, multi-level, and multi-
resolution mesh (Fig. 1(a)). Many scientific simulations in
various domains are thus transitioning or have transitioned to
AMR. As a result, scientific analysis techniques, such as visu-
alization, feature detection, and feature tracking, must make
the transition to match.

Query-driven analysis (generally performed through SQL-
like queries) is a fundamental approach for discovering scien-
tific phenomena. For example, in climate science, detection
of an extreme climate event called an Atmospheric River is
expressed as a query using a spatial selection and a value con-
straint [5]. Furthermore, query-driven analysis is an essential
approach to deal with the data deluge in various science fields.
As computational capabilities are moving towards the exas-
cale, simulations produce tremendous data. Searching for
critical information in these massive data requires fast query-
driven analysis. Thus, multiple efficient query-driven analy-
sis techniques, such as ALACRITY [11], DIRAQ [14], Fast-
Bit [16], and FastQuery [7], have been developed recently.

However, directly applying these existing techniques on
AMR data is inefficient as they are designed for single, uni-
form meshes. For example, one can refine all mesh levels to a
finest resolution to form a uniform grid (referred as “flatten-
ing”), allowing the direct application of existing techniques
without special modification. Yet, the “flattening” approach
defeats the purpose of AMR because it increases the comput-
ing, memory, and storage requirements explosively. This is
untenable for large-scale scientific data with dozens of vari-
ables. Therefore, there is a need to enable querying capabili-
ties directly on AMR data by embracing the AMR structure.

Developing an AMR-aware querying, however, is a non-
trivial task, as it necessitates a completely new indexing
methodology. Specifically, we need a new indexing method
capable of handling the hierarchical, non-uniform AMR data
that capture both value and space aspects at the same time.
Furthermore, as demonstrated in the early work [12, 14], an
effective and sustainable indexing technique towards future
large-scale computation needs to operate in the context of in
situ where the indexing runs concurrently with the simulation
run. Hence, we advocate for an in situ, scalable, and AMR-
aware indexing.

While appealing, this shift in indexing technique presents
several challenges. First, as a general in situ algorithm, in
situ indexing should have minimum overhead so as to not af-
fect the simulation run. Second, the AMR-awareness further
complicates this in situ algorithm because the AMR hierar-
chy is scattered across processes, and is typically both irreg-
ular and dynamically changing over time. Third, developing
an AMR-aware querying (assuming indexes have been built)
needs an efficient, parallel query processing strategy in order
to support large-scale scientific discoveries. Specifically, the
challenge centers around achieving balanced querying work-
load in the parallel context in presence of: 1) the irregular
index read access patterns invoked by unpredictable queries;
and 2) unbalanced AMR index sizes across levels.

To address all these challenges, we propose the first AMR-
aware in situ indexing and scalable querying methodology
for scientific exploration and analysis on the AMR data. Our
contributions are as follows:

• Formally define the general problem of query-driven analy-
sis for AMR data (Section 2). This formal definition paves

(a)

Level

X

Y B0,0 B0,1

B0,2 B0,3

B1,0

B1,1

(b)

Figure 1. Subfigure (a) shows an example of a 3-level AMR mesh with re-
finement ratio 2: from the coarsest to the finest level. Subfigure (b) illustrates
a 2-level AMR hierarchy, with three box types: 1) B0,2, B1,0, and B1,1 are
uncovered; 2) B0,0 and B0,3 are partially covered; and 3) B0,1 is fully cov-
ered.

the way for our systematic study of AMR indexing and
querying problem.
• Design an in situ, query-optimized, AMR-aware index-

ing method (Section 3.2) that efficiently builds an AMR-
specific index in a massively parallel manner.
• Develop a parallel, AMR-index-aware, workload-balanced

query processing method (Section 3.3).
• Integrate both methods within the Chombo AMR infras-

tructure [1], this way we make our AMR-specific analysis
services available for many existing Chombo-based appli-
cations.

We demonstrate the scalability of our in situ indexing using
up to 16,384 cores, and that of our querying using up to 1,024
cores with the Chombo-IO benchmark [6]. When compared
to the non-AMR-aware indexing and querying, our AMR-
aware indexing and querying demonstrate up to 12.4x and
500x, respectively.

2. PROBLEM STATEMENT
We now present formal definitions for a scalable, in situ in-
dexing component and a parallel, post-processing querying
component with respect to AMR-structured data. First, we
define the coarsening and refinement operators, which will
be helpful later1:

Definition 1 The coarsening operator C : ZD → ZD is
defined as C (i, r) = (b i0

r c, b
i1
r c, . . . , b

iD−1

r c), where r ∈
Z+ is a given refinement ratio. Correspondingly, we de-
fine the inverse refinement operator R : ZD → P

(
ZD
)

as R (i, r) = {i′ ∈ ZD | C
(
i′, r
)

= i}. Equivalently,
R (i, r) =

∏D−1
j=0 {rij , rij + 1, . . . , rij + r− 1}, where

∏
is

the N-ary Cartesian product. These operators can be naturally
extended to operate on sets of vectors.

Next, we define the components of an AMR structure.

Definition 2 A box is a set of integer coordinates within (in-
clusive) lower and (exclusive) upper corners x, y ∈ ZD with
0 ≤ x < y, where 0 denotes the zero vector and < (≤) de-
notes component-wise comparison of two vectors. That is, a
box B = {i ∈ ZD | x ≤ i < y}.
Definition 3 An AMR structure Ω with L ∈ Z+ levels, do-
main bound u ∈ (Z+)D, and refinement ratio r ∈ Z+ con-
1Definitions 1, 3, and 4, adapted from the Chombo design docu-
ment [1], were used in our previous work [17].

sists of a list of AMR levels Ω0, . . . ,ΩL−1. The first (coarsest)
level is a box with bounds 0,u: Ω0 = {i ∈ ZD | 0 ≤ i < u}.
For subsequent levels, Ωl ⊂ R (Ωl−1, r). Finally, every Ωl

can be decomposed into a disjoint union of ml boxes Bl,k

such that Ωl = ∪ml−1
k=0 Bl,k and Bl,x ∩Bl,y = ∅ when x 6= y.

We denote the set of all boxes composing an AMR structure
Ω as BΩ.

In other words, an AMR structure is a hierarchy of mesh lev-
els, with the coarsest level covering the entire computational
domain, and successively finer levels covering portions of the
next-coarser level. All mesh cells on a given AMR level have
the same mesh spacing, which is reduced by a given refine-
ment ratio relative to the next-coarser level. Additionally, in
the specific case of block-structured AMR considered in this
paper, each level’s mesh can always be decomposed into a set
of non-overlapping rectangular boxes. Figure 1 demonstrates
these definitions.

Definition 4 A cell at level l of AMR structure Ω is defined
as a pair (l, i) with i ∈ Ωl. The set of all cells in an AMR
hierarchy Ω is denoted by σ(Ω) = ∪L−1

l=0 {(l, i) | i ∈ Ωl}.
Definition 5 The uncovered predicate U : σ(Ω) →
{true, false} determines whether a given cell c = (l, i) is
uncovered, and is defined as

U(c) =

{
true if l = L− 1 or ∀i′ ∈ Ωl+1 C

(
i′, r
)
6= i

false else

Informally, we call a cell uncovered if no cells at the next
finer level are “on top of it” (i.e., coarsen down to the given
cell), or the given cell is already at the finest level.

We now give two definitions in preparation for defining the
AMR query-driven analysis we aim to support.

Definition 6 A spatial selection over an AMR structure Ω is
a box θ with corners x, y such that 0 ≤ x < y < u. A spatial
selection is intended to be interpreted within the coordinate
system of the coarsest AMR level, Ω0. A cell c = (l, i) is
said to be within spatial selection θ iff C

(
i, rl
)
∈ θ, that is,

iff its coordinates fall within the spatial selection box when
coarsened down to the coarsest AMR level. We denote the
set of all possible spatial selections over Ω as ΘΩ.

Definition 7 An AMR query-driven analysis is a function
QΩ : IV × ΘΩ → P (σ(Ω)× V) defined as QΩ(I, θ) =
{(c, v) ∈ σ(Ω) × V | U(c) ∧ c within θ ∧ v ∈ I}, where
V is a value domain set in Ω and IV is a set of all intervals in
V.

That is, for a given AMR structure Ω, a spatial selection θ
and a value interval I over a dependent variable with domain
V, the query-driven analysis function returns a set of cell-
value pairs such that 1) all cells are uncovered, 2) all cells
are within the given spatial selection, and 3) the value of the
dependent variable at each cell falls within the given value
interval. The reason we are interested only in uncovered cells
is that covered cells generally bear less-accurate values, often
computed by simply averaging down values from finer levels,
and thus are not interesting or useful.

Now we consider define the query-driven analysis QΩ(I, θ)
with an index X as an auxiliary data structure. Before for-
mally defining X , we introduce one more concept.

Definition 8 A box cover finding operation is a function Γ :
BΩ → BΩ such that Γ(Bl,k) = {Bl+1,n | R (Bl,k, r) ∩
Bl+1,n 6= ∅}
In other words, given a box Bl,k, the box cover finding op-
eration returns the set of boxes on level l + 1 such that when
the given box is refined to the next fine level, all boxes com-
prise the refined box. B is uncovered if it is either at the finest
AMR level, or all cells inB are uncovered;B is partially cov-
ered if some, but not all, of its cells are covered; andB is fully
covered if all of its cells are covered. Figure 1(b) exemplifies
all three types of boxes.

Now, we describe our AMR-aware index X as a data struc-
ture (or several data structures) that facilitates the following
operations on an AMR structure Ω: 1) fast identification of
all boxes within a given spatial selection θ; 2) fast compu-
tation of the box cover finding operation Γ(B) to identify
the uncovered/partially covered boxes from step 1, and which
cells within these boxes are uncovered; and 3) fast selection
of cells within the boxes from step 2 whose values fall within
a given value interval.

These three steps correspond to the three conjuncts in the def-
inition of query-driven analysis function QΩ given in Defini-
tion 7: we select the cells within θ, that are uncovered, and
whose values fall within I. The necessity of steps 1 and 3
is straightforward: they are required to meet the user-given
query constraints (spatial selection and value interval). Step
2, on the other hand, is needed to manage the non-uniformity
of the AMR structure. A real-world AMR structure can be
very complex, and so without the ability to quickly compute
the uncovered predicate, meeting the AMR-specific query re-
quirement of returning only uncovered matching cells is too
expensive. These three operations, then, are key to AMR-
aware query processing, and therefore form the central re-
quirements of an AMR-aware index.

3. METHOD
We now present our proposed AMR-aware parallel, in situ
indexing and querying methods in three parts. We first
present the basic hybrid indexing structure to capture spatial
and value information in the AMR hierarchy(§ Section 3.1).
Then, we discuss how to extend these methods to a parallel, in
situ context (§ Section 3.2). Finally, we discuss how to query
this AMR-aware index with a workload-balanced strategy (§
Section 3.3).

3.1 A Hybrid, AMR-aware Index
To accommodate querying AMR data with both spatial and
value-based constraints, we design a hybrid index data truc-
ture. A high-level overview is given in Figure 2. Its spatial in-
dex component consists of a Directed Acyclic Graph (DAG),
which organizes the AMR boxes into covering relations as
some AMR frameworks, such as Chombo, lack the support of
maintaining such relations. Thus, the DAG is to provide fast
retrieval of all boxes within a given spatial selection. Each

vertex in the DAG represents an AMR box, and edges be-
tween vertices refer to a box-covering relationship. The jux-
taposed value index component consists of many value index
“segments,” each covering one AMR box’s data and collec-
tively covering the whole AMR dataset. Each segment can
be built from applying any existing value indexing technique,
e.g., bitmap index [16], ALACRITY index [11], etc.

b3

b4

b2b1

b5

b6

(a)

Value Index

Segment

Vertex/Box

 Level 1

 Level 2

 Level 3

 Level 0

b
3

b
2

b
4

b1

b
5 b

6

(b)

Figure 2. Subfigure (a) shows a 3-level AMR hierarchy with boxes high-
lighted on each level. Subfigure (b) illustrates an AMR-aware hybrid index
built from the left AMR hierarchy.

These two index components, spatial and value-based, pro-
vide the index capabilities needed for an AMR-aware index
as laid out in the Problem Statement. The spatial component
speeds up evaluation of spatial selections, as well as identifi-
cation of uncovered cells. In contrast, the value-based com-
ponent accelerates the value interval portion of queries.

Algorithm 1: AMR Index Construction
Input : A L-level AMR Ω
Output: AMR index, X

1 //Phase I
2 X = create root box(physical domain(Ω))
3 X.add covering boxes(Ω0)
4 for ` = {0, ..., L− 2} do
5 for every box B ∈ Ω` do
6 for f = {0, ..., |Ω`+1| − 1} do
7 if B.refine ∩ Ω`+1[f] 6= ∅ then
8 B.add covering boxes(f)
9 //Phase II

10 for every box B during the traversal of X do
11 if B is not fully covered then
12 B.vidx = build value index(B.data)
13 return X

As an initial step, we give a basic (serial, non-in situ) algo-
rithm for building a hybrid AMR-aware index in Algorithm 1.
Phase I (lines 2 to 8) builds the DAG by finding the box-
covering relationship between boxes in adjacent AMR levels
(lines 5 to 8). Phase II (lines 10 to 12) builds a value index
for each non-fully-covered box, after which the value index
segment is attached to its corresponding box (line 12).

3.2 In Situ, AMR-aware Indexing
We now explain how to build the hybrid index in a paral-
lel, in situ context; to do so, however, it is necessary to first
understand the context in which our indexing routine oper-
ates. As an AMR simulation advances its computation to each

new time step, it will dynamically regrid (some of) the mesh,
potentially generating new mesh levels, by tagging cells us-
ing error estimation criteria. During the regridding, a load-
balancing routine is invoked to assign of AMR boxes to pro-
cesses in a intelligent manner. This results in a distributed
environment with a balanced workload for the simulation to
compute its numerical solutions.

Our indexing is invoked at the end of a given time step, when
AMR data is available for indexing. Regarding the resources
for building indexes, the index generation uses the same re-
sources available to the simulation. Particularly, every pro-
cess has AMR data (e.g., boxes and data) with approximate
size, and also has the whole AMR boxes for efficient compu-
tation purpose. This is observed in simulation infrastructures,
such as Chombo [1].

We provide a high-level overview of our three-phase in situ
indexing in Algorithm 2. In the spatial index building phase,
a scattered DAG is generated on each process. The value
index building phase generates value indexes for local AMR
data and attaches them to their corresponding boxes. Finally,
all processes write their local indexes to an aggregated index.

Algorithm 2: In situ AMR Indexing
Input : A L-level global AMR hierarchy, Ω
Input : Distributed AMR data on process p, Ωp

Output: Persisted AMR index, X
1 all processes (in parallel) do
2 for ` = {0, ..., L− 2} do //I. Spatial Index Building
3 for B`,k ∈ Ω`,p do //Ω`,p is local boxes on level `
4 g = modified binary search(Bl,k,X`+1) for

i = {g.lb, ..., g.ub} do
5 if B`,k.refine ∩ Ω`+1[i] 6= ∅ then
6 B`,k.add covering boxes(i)
7 for ` = {0, ..., L− 1} do //II. Value Index Building
8 H = [0, ...m`,p − 1] //mapping array
9 M` = {Ω`,p[0]}

10 for i = {1, ..., |Ω`,p| − 1} do
11 j = |M`| − 1
12 if mergeable(Ω`,p[i],M`[j]) then
13 M`[j] = Ω`,p[i] ∪M`[j]
14 else
15 append Ω`,p[i] to M`

16 update all i in H to |M`| − 1
17 Ω`,p = M`

18 G` = sync to global mapping(H)
19 if ` > 0 then
20 update covering boxes(M`−1, B`−1, G`)
21 build value index on each level(M`, G`)
22 write index collectively(M) //III. Index Write

Spatial Index Building
When scaling the basic indexing method given in Algorithm 1
to an in situ, large-scale context, we identify the box cover
finding operation Γ, the essence of which is to find covering
boxes between any two consecutive levels, as a performance
bottleneck. Specifically, the cost of running the two-level for

loop used to implement Γ (lines 5 to 8) in Algorithm 1 is con-
siderably high as the number of boxes becomes large. Thus,
our effort at this phase primarily focuses on optimizing this
operation in an in situ context.

Without loss of generality, assuming we have two successive
AMR level boxes on any process p: Ω`,p and Ω`+1, where
Ω`,p is the `-level data that are assigned to process p, and
Ω`+1 = ∪m`+1−1

j=0 B`+1,j , where m`+1 is total number boxes
on level ` + 1. Note that Ω`+1 is available to any process
because it is observed in AMR libraries, such as Chombo.

Toward pruning the full scan of Ω`+1 to a subset scan, we
take advantage of two insights. First, the small ends (bottom-
left points) of all boxes at any level are commonly sorted
in lexicographic order in AMR frameworks; let sequence
X` = {x0, ..., xm`−1} represent the small ends in this order.
Second, if two boxes are overlapping, the interval of these two
boxes on each dimension (particularly, the first dimension we
consider in this optimization) needs to overlap as well.

Taking the above two properties together, we expect to find a
range (denoted as g = [lb, ub]) in Ω`+1 for any given coarse-
level box B`,k, such that any `+ 1-level box within the range
could potentially overlap with B`,k, and any box out of the
range never overlaps with B`,k. Searching for ub and lb is
performed by a slightly-modified standard binary search on
the sorted sequence X`. Although, the asymptotic complexity
of our optimized method remains the same as that of the two
for-loop operation, the practical run time is much smaller due
to the pruned search space.

Building Value Index
As before, the second indexing phase concerns building the
value-based portion of the hybrid index. However, this time,
our parallel, in situ algorithm bears the additional optimiza-
tion of performing box merging to improve index quality.

Back in Algorithm 1, we built one value index segment per
AMR box. However, when faced with, e.g., millions of boxes
(and thus millions of value index segments), such a highly
“fragmented” index would produce poor performance [14].

Thus, we “de-fragment” the indexes to yield a query-
optimized AMR-aware index. Our main idea is to merge the
indexes belonging to contiguous boxes on the same AMR
level to reduce the number of index segments. The ques-
tion, however, is to determine whether boxes are mergeable or
not, because merging arbitrary (non-contiguous) boxes would
lead to indexing non-continuous data with holes. Thus, we
define two boxes, B1 and B2, are mergeable iff the resultant
box Br, such that Br = B1 ∪ B2 and Br \ B1 \ B2 = ∅.
Note that, we exclude the fully covered boxes from the merg-
ing procedure to avoid unnecessary computation. Also, we
merge the boxes on the same process to avoid expensive com-
munications between processes.

The pseudocode of our scalable box merging approach for an
AMR level is shown from lines 8 to 17 in Algorithm 2. A
box array M` temporarily keeps the currently merged boxes
during the entire merge procedure (line 9). A mapping array
H is used as an array-based union-find structure to store the

mapping from original boxes to merged boxes (line 8). For in-
stance, H[i] = j indicates the original box i becomes the jth
box in the merged box array, M`. The search for mergeable
boxes occurs only on local boxes. If there are two boxesBj in
the M` and Bi in the Ω`,p, are detected as mergeable boxes,
then the jth box in the array M is updated to the merged box
of Bj and Bi, meaning Bi fuses into Bj (line 13). Mean-
while, all boxes that were mapped to box i are updated to
mapping to the new box j (line 16). If these two boxes are
not mergeable, Bi just simply appends to the end of the M`

(line 15). Similarly, all boxes that were mapped to box i now
map to the new array index of box i (line 16). Note that the
mergeable determination only occurs between a current box
in Ω`,p and the last box in M` (line 9) because the small ends
of boxes are in sorted order.

After the box merging, we must go back and update the DAG
computed in the first phase, substituting in the newly-merged
boxes. To do so, we build a global mapping structure from
original to merged boxes by synchronizing all the local map-
pings generated by each process (line 18). Then, each merged
box’s cover relation is re-established by converting the union
of covering box sets of original boxes to a new covering box
set using the global mapping (line 20).

Similarly to the Algorithm 1, we then conclude this phase by
building the actual value indexes for each (now-merged) box
level by level. However, this time, each process concurrently
generates value indexes on only its local data. This indepen-
dent process-by-process index generation thus does not in-
cur any communication among processes, but requires a last
phase to collect the distributed index segments into a global
shared index structure.

Finally, every process first collects the metadata of the global
index (the new merged boxes), which consists of the write
offset and the total write size, by performing the MPI scan
and MPI Allreduce operations. All the processes then collec-
tively write a global index.

3.3 Scalable AMR-index-aware Querying
We now discuss using the hybrid AMR-aware index for exe-
cuting queries consisting of a spatial selection θ and a value
constraint I, in parallel, post-processing context. A query’s
output is a list of cell-value tuples (c = (l, i), v), in which
cells are all uncovered as stated in Section 2

Our basic querying strategy is a three-stage AMR box prun-
ing process, applied level-by-level. First, an input “candi-
date” set of boxes is reduced to only those intersecting θ (the
initial candidate set contains just the root box). Next, value
based index segment are used to select cells matching the
value constraint. After this, the DAG is consulted again to
eliminate any covered cells from the result. Finally, we con-
tinue recursion to the next level, forming the new candidate
set by following the covering relationship from current level
boxes that intersect θ, until all levels are visited. Note that θ
is refined accordingly when the query processing advances to
a new level, in order to match the coordinate system.

We parallelize the basic query approach by partitioning the
workload. An initial approach would be to partition θ equally

Algorithm 3: Parallel AMR-aware Query Process
Input : Query constraints: θ and I
Output: A collection of tuples, T

1 all processes assigned with boxes (in parallel) do
2 RR,L = load refine ratios and level num()
3 B = load root box()
4 for ` = {−1, ..., L− 1} do
5 Bs = process spatial selection(B, θ)
6 Bp = distribute boxes(Bs)
7 if ` 6= L− 1 then
8 CBp = load covering boxes(Bp)
9 B = aggregate boxes(CBp)

10 for every box b ∈ Bp do
11 idxMeta = load index metadata(b)
12 R = value processing(idxMeta, I)
13 filter covered cells(b, b.covering boxes,R)

T = T ∪ P
14 θ = refine(θ, ` == −1 ? 1 : RR[`])
15 return Υ

across all p processes. While a reasonable approach for uni-
form grids, the adaptive nature of AMR would likely result in
a highly-skewed workload under this strategy. For example,
one process might have boxes only to a middle level, whereas
another process might have boxes to the finest level. This
would result in severe load imbalance.

To deal with this, we adopt a more balanced workload dis-
tribution strategy, wherein processes communicate to evenly
distribute candidate box sets for each level. This strategy
is realized in Algorithm 3. The aggregate boxes function
performs an MPI all-to-all operation to make all boxes to
be processed available to every process (line 9). Then, the
distribute boxes function assigns t/p boxes to each process,
where t is the total number of boxes at one level (line 6).
This effectively balances the number of boxes on each pro-
cess, which is especially in cases where some processes have
very large number of covered boxes, but other processes do
not. Note that the final step of Algorithm 3, querying the in-
dex segments on lines 13 and 14, is treated generically here,
as this task is handled by the particular value-based indexing
technique employed.

4. RESULTS

4.1 Experimental Setup
We conduct all evaluations on the “Edison” supercomputer at
the National Energy Research Scientific Computing Center
(NERSC). We implement our indexing and query framework
based on the Chombo block-structured AMR framework [1],
a popular framework used by many scientific applications.
We use the HDF5 I/O library for writing our AMR index be-
cause not only is HDF5 one of widely-used I/O frameworks,
but it also has a hierarchical data model which fits the AMR
structure. Last, we leverage ALACRITY, a lightweight value
indexing technique, as our value index component.

4.2 AMR-aware Indexing Evaluation
Scalability of AMR-aware Indexing

Performance of in situ indexing has to scale well as the index-
ing phase will run concurrently with distributed simulations
that are already using large numbers of processors. To show
the impact of our indexing, we have performed both strong
and weak scalability studies. We conduct our experiments us-
ing the Chombo I/O benchmark, which provides a real in situ
context to our indexing [6]. We configure the benchmark to
perform 2D and 3D simulations, which are common in many
applications. In the weak scaling experiment, each MPI pro-
cess is assigned ≈40MB and ≈35MB of data in size for the
2D and 3D runs, respectively, by Chombo’s load balancing
function. In the strong scaling experiment, the size of total
produced data is kept constant at ≈325GB and ≈285GB for
entire 2D and 3D runs, respectively. Note that we repeat the
value index building ten times, simulating indexing for ten
data variables.

 0

 5

 10

 15

 20

 25

1024 2048 4096 8192 16384

T
IM

E
 (

S
ec

.)
PROCESSES

2D

2D WITH I/O

3D

3D WITH I/O

(a)

 0

 5

 10

 15

 20

 25

T
IM

E
 (

se
c.

)

PROCESSES

2D

3D

2D

3D

2D 3D

2D

3D

2D

3D

1024 2048 4096 8192 16384

Spatial Index Build
Value Index Build
Communication
Index Write

(b)

Figure 3. Weak scaling performance of the AMR-aware indexing with
≈40MB and 35MB data size per-process (total 650GB and 570GB) for 2D
and 3D runs, respectively.

 2

 4

 8

 16

 32

 64

1024 2048 4096 8192 16384

T
IM

E
 (

S
ec

.)

PROCESSES

2D

2D WITH I/O

3D

3D WITH I/O

(a)

 0

 10

 20

 30

 40

 50

 60

T
IM

E
 (

se
c.

)

PROCESSES

2D

3D

2D

3D 2D

3D 2D 3D

2D 3D

1024 2048 4096 8192 16384

Spatial Index Build
Value Index Build
Communication
Index Write

(b)

Figure 4. Strong scaling performance of the AMR-aware indexing with total
≈ 325GB and 285GB data size for 2D and 3D runs, respectively.

We show the execution time of indexing with weak scaling
in Figure 3, increasing the number of processes from 1K to
16K using 2D and 3D configurations. Without the index write
time included in the execution time, we observe a relatively
constant performance. A slight increase at larger scales is
due to the spatial index building time. In the box cover find-
ing step, the narrowed search space (a subset of the fine-level
boxes) grows as we double the problem size and the num-
ber of processes in this experiment. As shown in Fig. 3 (a),
slightly increased communication cost during the index build-
ing phase also contributes the small increase in the execution
time. Overall, the computation cost of our AMR-aware index
building scales well with the increased number of processes.
The size of the index varies between 60% and 110% of the
original data, with compression turned on. We also show the
I/O time in writing the indexes in Figure 3, which increases
as the problem size increases, as expected.

We show the strong scaling performance in Figure 4. We ob-
serve that the indexing time becomes nearly half when the

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 9 18 27 36 45 54 63 72 81 90

In
 S

it
u

 In
d

ex
in

g
 O

ve
rh

ea
d

 (
%

)

TimeStamp

Computational Overhead

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 9 18 27 36 45 54 63 72 81 90

In
 S

it
u

 In
d

ex
in

g
 O

ve
rh

ea
d

 (
%

)

TimeStamp

End-to-End Overhead

(b)

Figure 5. The overhead of the AMR-aware, in situ indexing in a BISICLES
run for consecutive 90 time-steps. Subfigure (a) and (b) show percentage of
indexing (CPU) and end-to-end (CPU + I/O) time added on original BISI-
CLES time, respectively.

number of processes is doubled. As observed with the weak
scaling test, the time for building the spatial index does not
reduce at the same pace as that for building the value index
component as shown in Fig. 4 (b). The search space on the
fine-level boxes in the box cover finding remains the same
with scaling the number of processes becomes twice. De-
spite that, we still observe a decrease in time spent building
the spatial index, as the number of boxes involved in the box
cover finding per process is reduced by half when the num-
ber of processes doubles. The communication cost, is almost
negligible due to the total box mapping size being relatively
small. From these scaling studies, we observe that our value
index build component has nearly perfect scaling due to our
communication-avoiding strategy.

Overhead of In Situ Indexing
To evaluate the overhead of in situ indexing, we use an ex-
isting Chombo-based AMR ice sheet modeling code, BISI-
CLES [8]. We integrate our indexing algorithm directly into
a trunk version of BISICLES. We conduct this experiment
simulating the continental ice sheet of Antarctica, where the
simulation begins with a 768x768 coarse mesh and generates
AMR refined levels up to 6 levels using a refinement ratio
of 2. Our indexing algorithm is invoked at every time step
for the variable “dThicknessDT” (representing ice thickness
change) during the simulation run, producing one index file
per time step. Meanwhile, after every time step, the simu-
lation writes a subset of its data into an HDF5 plot file for
visualization and analysis purposes. We run the simulation
with 1500 processes.

We show the computational and the end-to-end overheads of
index generation on the simulation in Figure 5. The end-to-
end overhead includes both the computational and the I/O
overhead. We observe that the overheads are negligible. The
computation overhead is in the range of 0.01% (shown in
5(a)), and the end-to-end overhead is typically around 1%
(5(b)). The spikes in the end-to-end overhead is due to the
inconsistent I/O performance. Overall, the overhead of our
indexing is small, which is necessary for generating indexes
in an in situ fashion.

Effectiveness of AMR-awareness in Indexing
We now demonstrate the effectiveness of our AMR-aware in
situ indexing by comparing a non-AMR-aware in situ index-
ing, which needs flattening of the AMR structure to a uniform
mesh at the finest resolution. We use ALACRITY indexing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

256 1024 4096 16384

T
IM

E
 (

se
c.

)

PROCESSES

Non-AMR-aware Indexing

AMR-aware Indexing

(a)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

256 1024 4096 16384

S
T

O
R

A
G

E
 IN

C
R

E
A

S
E

 (
x)

PROCESSES

Non-AMR-aware Storage Increase

AMR-aware Storage Increase

(b)

Figure 6. Performance (subfigure (a)) and storage increase (subfigure (b))
comparison between our AMR-aware in situ indexing and a non-AMR-aware
in situ indexing, flattening.

on the flattened uniform grid. The major difference between
these two indexing is that our indexing operates directly on
the AMR structure, as opposed to the flattening approach,
which runs on an AMR-refined uniform mesh.

Figure 6 shows our AMR-aware indexing consistently out-
performs the flattening method for two metrics: total in-
dexing time, representing the in situ performance overhead,
and storage requirement increase (index size divided by the
original AMR size), indicating the run-time memory foot-
print requirement. Our AMR-aware indexing approach runs
achieves a maximum of 12.4x speedup over non-AMR-aware
approach. At 16K scale, our approach outperforms existing
technique by ≈ 5.5x. The storage overhead with the tradi-
tional non-AMR-aware approach is obviously significantly
higher. At 16K scale, the storage overhead is ≈ 6x more than
our approach.

4.3 AMR-index-aware Querying Evaluation
We now evaluate the scalable AMR-aware querying based on
indexes produced by experiments described in Section 4.2 All
queries we execute in this section have a spatial selection and
a value interval constraint. For the purpose of demonstrating
scalability, we instruct our query engine to return a list of
cells, rather than tuples. Time reported in this section is the
maximum querying time across all processes.
Querying scalability
We evaluate performance of querying 2D data in two aspects:
increasing process number from 32 to 1024 (in 2x incre-
ments) with a fixed querying selectivity of 1%, and increasing
the selectivity with a fixed number of processes (i.e., 256 pro-
cesses). Note that using up to 1024 processes as our query-
ing demonstration is sufficient as the analysis scale is often
much smaller than the data producing scale. Furthermore, to
demonstrate the effectiveness of our index defragmentation,
we conduct the same queries for four different levels of box
merging. From the coarsest to the finest level, they are origi-
nal aggregation, in which one value index segment associates
with one original AMR box; low, medium, and high aggrega-
tions, in which one value index segment is in association with
at most two, four, and unlimited original boxes along each di-
mension, respectively.

Figures 7 report the query performance over the four index
aggregation levels for 2D datasets. In the fixed-selectivity
experiments (subfigures 7(a)), we observe the query perfor-
mance continuously improves with increasing process num-
ber. As the number of available boxes to be processed by

 1

 2

 4

 8

 16

 32

 64

32 64 128 256 512 1024

Q
U

E
R

Y
 T

IM
E

 (
S

ec
.)

PROCESSES

ORIG

LOW

MEDIUM

HIGH

(a)

 0

 5

 10

 15

 20

 25

1.50% 2% 2.50% 3% 3.50% 4%

Q
U

E
R

Y
 T

IM
E

 (
S

ec
.)

SELECTIVITIES

ORIG

LOW

MEDIUM

HIGH

(b)

Figure 7. Scalable query performance with a fixed query selectivity of 1%
(subfigure 7 (a)) and a fixed process number of 256 (subfigure 7 (b)) at four
index aggregation levels.

each process saturates at 512 processes, the improvement
stalls, showing that the querying for this dataset scales up to
512 processes. In the fixed-concurrency experiments (subfig-
ure 7 (b)), the query time grows as the increase of the query
selectivity, which indicates the workload on each process in-
creases as the result of the increasing querying coverage. We
note that lines with low, medium, and high index aggregations
become slightly flat when the selectivity increases. This is
because the additional boxes retrieved by the increased selec-
tivity are handled concurrently by processes with light work-
load, which leads to an unchanged overall query time. We
also observe that in most cases, as the index aggregation level
increases, the query speed is improving (up to 5.4x improve-
ment compared to original aggregation). As we increase the
index aggregation level (in other words, decrease the number
of value index segments), the number of reads invoked during
the query processing decreases, resulting in lower time.
Effectiveness of AMR-index-aware Querying
We now demonstrate the advantage of our AMR-aware
querying method compared to a non-AMR-aware approach,
referred as scan approach. As the name suggests, in the scan
approach, each process reads AMR data into memory and
performs a sequential scan level by level to verify the condi-
tions of a given query. In order to filter the covered cells from
the temporary results, each process performs a box cover-
finding operation by using the two for-loop approach shown
in Algorithm 1.

As shown in Figure 8, we observe that the new AMR-aware
query approach is up to 500x faster than the scan approach,
which justifies our effort of developing an AMR-aware in-
dex. Surprisingly, a key factor in slowing the scan approach
is not from loading the entire AMR data as we expected. In-
stead, it is the box cover-finding operation, which takes most
time. This demonstrates the effectiveness of our optimized
box cover-finding operation.

5. RELATED WORK
Indexing is frequently a key strategy employed to speed up
query processing over large datasets. Indexing can commonly
be split into spatial and value indexing, in support of spatial-
and value-based constraints in queries, respectively. Yet, in-
dexing and query techniques for AMR data are virtual unex-
plored in the literature.

More generically (i.e., not AMR-specific), numerous value
indexing techniques in scientific community have been de-
veloped. FastBit [16] is a state-of-the-art bitmap indexing

 0

 100

 200

 300

 400

 500

32 64 128 256 512 1024

S
P

E
E

D
U

P
 O

V
E

R
 S

C
A

N

PROCESSES

2D-ORIG

2D-HIGH

3D-ORIG

3D-HIGH

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1.5% 2% 2.5% 3% 3.5% 4%

S
P

E
E

D
U

P
 O

V
E

R
 S

C
A

N

SELECTIVITIES

2D-ORIG

2D-HIGH

3D-ORIG

3D-HIGH

(b)

Figure 8. Speedup of our AMR-aware querying over the scan approach for
2D and 3D AMR.

library used by many scientific applications, offering WAH
bitmap compression as its key feature to overcome explo-
sive index size growth under high-cardinality scientific data.
Recent work has demonstrated storage light-weight index al-
ternatives, such as ALACRITY or hyperdyadic tree indexes
[4, 11]. These techniques further have been shown to operate
in a parallel and/or in situ context [7, 9, 12, 14, 15]. Unfortu-
nately, none of these value indexing works are AMR-aware.
Nonetheless, our proposed AMR-aware indexing and query
approach leverages these existing work, seamlessly integrat-
ing any existing value indexing technique.

Spatial indexing, in contrast, deals with accelerating queries
over geometry and objects in a coordinate space. The R-tree
and its variants [2, 10] are among the most common spatial
index structures; these function by recursively decomposing
the entire spatial domain into a tree of nested bounding vol-
umes, with spatial objects then collected into the leaf nodes.
Though seemingly applicable to an AMR grid hierarchy, it
turns out that the one-to-many tree-based structure of these
and related spatial indexes is not a perfect match. Instead,
AMR boxes exhibit a many-to-many covering relationship.
Though methods exist in field of visualization to convert a
many-to-many hierarchy to one-to-many [13], these substan-
tially increase the number of tree nodes. However, managing
the multiplicity of nodes (AMR boxes) already represents a
scalability challenge. Instead, we propose the use of a more
general DAG spatial structure to model this type of hierarchy.

6. CONCLUSION
In this work, we formally define, and then solve, the scalable
query-driven analysis problem on block-structured AMR.
Our proposed method consists of two parts, a massive paral-
lel, in situ indexing and a scalable post-processing query. We
minimize the performance disturbance of our in situ index-
ing by exploiting AMR boxes’ lexicographical order in the
AMR library infrastructure. Further, we optimize the index
quality using a parallel, decentralized, user-controllable box
merging approach. On the query side, we develop an AMR-
index-aware querying with a workload balancing approach.

Our results show that our AMR-aware indexing and query-
ing is up to 12.4x and 500x faster than non-AMR-aware in-
dexing and querying. We show scalability up to 16,384 and
1,024 cores on the Edison supercomputer for our indexing
and querying, respectively, demonstrating the viability of our
AMR-aware analysis framework for large-scale, parallel sci-
entific exploration. Additionally, we measure the overhead of
our in situ indexing within the BISICLES ice sheet modeling

code, demonstrating its impact on the simulation run to be
negligible.

7. ACKNOWLEDGMENT
We would also like to thank the National Energy Research
Scientific Computing Center and Oak Ridge National Labo-
ratory for the use of resources. Oak Ridge National Labora-
tory is managed by UTBattelle for the LLC U.S. D.O.E. un-
der Contract DE-AC05-00OR22725. Support for this work
was provided by U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research and the U.S.
National Science Foundation (Expeditions in Computing and
EAGER programs). Work at the Lawrence Berkeley National
Laboratory was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES FORMAT
References must be the same font size as other body text.
While this document provides several examples of how to cite
common types of sources, it does not provide rules on how to
cite all types of sources. Therefore, if you have a source that
is not included in the examples below, SCS suggests that you
find the example that is most similar to your source and use
that format.

REFERENCES
1. Adams, M., Colella, P., Graves, D. T., Johnson, J., Keen,

N., Ligocki, T. J., Martin, D. F., McCorquodale, P.,
Modiano, D., Schwartz, P., Sternberg, T., and Straalen,
B. V. Chombo software package for AMR
applications-design document. Lawrence Berkeley
National Laboratory Technical Report LBNL-6616E
(2000).

2. Beckmann, N., Kriegel, H., Schneider, R., and Seeger,
B. The R*-tree: An efficient and robust access method
for points and rectangles. 1990.

3. Berger, M. J., and Oliger, J. Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
Computational Physics (1984).

4. Boyuka II, D. A., Tang, H., Bansal, K., Zou, X., Klasky,
S., and Samatova, N. F. The hyperdyadic index and
generalized indexing and query with pique. In
Proceedings of the 27th International Conference on
Scientific and Statistical Database Management (2015).

5. Byna, S., Wehner, M. F., and Wu, K. J. Detecting
atmospheric rivers in large climate datasets. In
Proceedings of the 2nd international workshop on
Petascal data analytics: challenges and opportunities,
ACM (2011).

6. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., and
Riley, K. 24/7 characterization of petascale I/O
workloads. In Cluster Computing and Workshops
(2009).

7. Chou, J., Wu, K., and Prabhat. FastQuery: A parallel
indexing system for scientific data.

8. Cornford, S. L., Martin, D. F., Graves, D. T., Ranken,
D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J.,
Ng, E. G., and Lipscomb, W. H. Adaptive mesh, finite
volume modeling of marine ice sheets. Journal of
Computational Physics (2013).

9. Dong, B., Byna, S., and Wu, K. Parallel query
evaluation as a scientific data service. In Cluster
Computing (CLUSTER), 2014 IEEE International
Conference on, IEEE (2014).

10. Guttman, A. R-trees: A dynamic index structure for
spatial searching. ACM, 1984.

11. Jenkins, J., Arkatkar, I., Lakshminarasimhan, S., Shah,
N., Schendel, E. R., Ethier, S., Chang, C. S., Chen, J. H.,
Kolla, H., Klasky, S., and Samatova, N. F.
Analytics-driven lossless data compression for rapid
in-situ indexing, storing, and querying. In Proc.
Database and Expert Systems Applications (DEXA)
(2012).

12. Kim, J., Abbasi, H., Chacon, L., Docan, C., Klasky, S.,
Liu, Q., Podhorszki, N., Shoshani, A., and Wu, K.
Parallel in situ indexing for data-intensive computing. In
Large Data Analysis and Visualization (LDAV), 2011
IEEE Symposium on (2011).

13. Kreylos, O., Weber, G. H., Bethel, E., Shalf, J. M.,
Hamann, B., and Joy, K. I. Remote interactive direct
volume rendering of AMR data. Lawrence Berkeley
National Laboratory (2002).

14. Lakshminarasimhan, S., Boyuka II, D. A., Pendse, S. V.,
Zou, X., Jenkins, J., Vishwanath, V., Papka, M. E., and
Samatova, N. F. Scalable in situ scientific data encoding
for analytical query processing. In Proceedings of the
HPDC 2013 (2013).

15. Lakshminarasimhan, S., Zou, X., Boyuka Ii, D. A.,
Pendse, S. V., Jenkins, J., Vishwanath, V., Papka, M. E.,
Klasky, S., and Samatova, N. F. DIRAQ: Scalable in situ
data-and resource-aware indexing for optimized query
performance. Cluster Computing (2014).

16. Wu, K. FastBit: An efficient indexing technology for
accelerating data-intensive science. Journal of Physics:
Conference Series 16 (2005).

17. Zou, X., Wu, K., Boyuka, D., Martin, D. F., Byna, S.,
Tang, H., Bansal, K., Ligocki, T. J., Johansen, H., and
Samatova, N. F. Parallel in situ detection of connected
components in adaptive mesh refinement data. In
Cluster, Cloud and Grid Computing (CCGrid) (2015).

	1 Introduction
	2 Problem Statement
	3 Method
	3.1 A Hybrid, AMR-aware Index
	3.2 In Situ, AMR-aware Indexing
	 Spatial Index Building
	 Building Value Index

	3.3 Scalable AMR-index-aware Querying

	4 Results
	4.1 Experimental Setup
	4.2 AMR-aware Indexing Evaluation
	 Scalability of AMR-aware Indexing
	 Overhead of In Situ Indexing
	 Effectiveness of AMR-awareness in Indexing

	4.3 AMR-index-aware Querying Evaluation
	 Querying scalability
	 Effectiveness of AMR-index-aware Querying

	5 Related Work
	6 Conclusion
	7 Acknowledgment

